
Fine-Tuned Verification for Verifiable Delay
Functions in Blockchains

Vidal Attias1, Luigi Vigneri1, and Vassil Dimitrov1,2

1 IOTA Foundation
Berlin, Germany

2 University of Calgary
Calgary, AB, Canada

Abstract. Verifiable Delay Functions (VDFs) are a set of new crypto-
graphic schemes ensuring that an agent has spent some time (evaluation
phase) in an unparalleled computation. A key requirement for such a
construction is that the verification of the computation’s correctness has
to be done in a significantly shorter time than the evaluation phase.
This has led VDFs to recently gain exposure in large-scale decentralized
projects as a core component of consensus algorithms or spam-prevention
mechanisms. In this work, due to the increasing relevance and the lack
of literature, we will focus on the optimization of the verification phase
of Wesolowski’s VDF and provide a three-fold improvement concerning
multi-exponentiation computation, prime testing techniques, and hash-
ing tricks. We will show that our optimizations reduce the computation
time of the verification phase between 12% and 35% for the range of
parameters considered.

Keywords: Verifiable Delay Function, anti-spam mechanism, optimization,
prime testing

1 Introduction

After a score of years since the emergence of commercial services on the Inter-
net [30] and following an increasing centralization of data by governments and
large private companies, decentralized projects promise more control over privacy
and personal data. Enabling access to services to a large scale of users, humans,
or potentially Internet of Things (IoT) devices, requires managing large streams
of messages and inescapable loads of spamming, would it be accidental or mis-
chievous. However, spam-prevention mechanisms in such decentralized settings
require novel approaches and it essentially boils down to asking users to pledge
a scarce resource they own proportionally to their use of the network. Such re-
sources include money, computational power, time, identity, or a certain notion
of reputation in the network [7,12]. Using time as a spam-prevention mechanism
dates back to the late 90s with the Hashcash system [3] that prevented e-mail
spamming by requiring senders to solve a small cryptographic puzzle, called Proof

2 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

of Work, consisting in finding the nonce corresponding to a hashing function’s
output. This idea will be used in the founding paper of the blockchain [22] and
will be the cornerstone of many Distributed Ledger Technology (DLT) projects.

This digital revolution is hindered by various structural flaws of DLTs, with
the major drawback being the non-scalability of most blockchain-based projects1.
This shortcoming prevents many potential use cases and, additionally, these so-
lutions imply high transaction fees which are not compatible with a future filled
with IoT devices: use cases involving high-transaction throughput include au-
tonomous vehicles [14, 17] posting updates on their state or paying a toll or a
parking, supply chains [29] involving multiple partners that need a source of
trust in their relations, digital monetary systems [11,16] and so on. Fortunately,
some DLTs are moving forward aiming to be the backbone of these future high-
performance, decentralized networks: among them, IOTA [27], Ethereum 2.0 [18],
Bitcoin’s Lightning off-chain protocol [26], Polkadot [32]. These projects aim to
eliminate the need for expensive Proof of Work, sometimes replacing it with
a Verifiable Delay Function (VDF) [5, 10, 25, 31] as a spam-prevention mecha-
nism [1] or as a core component of the consensus protocol [8]. VDFs were intro-
duced in 2018 by Boneh et al. [5] where the authors formally defined functions
that provably take some sequential steps to compute, hence some time. At a high
level, VDFs can be seen as a Proof of Work that cannot be parallelized. As an ex-
ample, an RSA-based VDF will require to solve y = x2τ mod N , which can only
be done efficiently by performing τ squarings and no parallel algorithm is known
to solve this problem. In this paper, we will look closely at the Wesolowski’s ef-
ficient VDF [31] which ensures small verification times and low communication
overhead [13]; these features make this VDF one of the best candidates for spam
prevention in DLTs.

Our main contribution consists of a thorough study of the verification phase.
Fast verification is critical when VDF is used as an anti-spam mechanism in DLTs
since invalid messages have to be detected and discarded rapidly to avoid harm-
ing the performance of the system. This study is focused on the optimization of
the three most time-consuming parts of the verification algorithm: i) modular
multi-exponentiation, ii) prime testing algorithm and iii) hash function com-
putation. In this paper, we will provide a theoretical analysis of each part and
will demonstrate, through experiments on real devices, that important improve-
ments can be achieved with realistic parameters. To the best of our knowledge,
this is the first work of this kind as the VDF literature is either focused on the
cryptographic theory of VDFs or the optimization of the evaluation phase.

The rest of the paper is organized as follows. First, in Section 2 we will intro-
duce VDFs and their usage, and describe Wesolowski’s construction. Then, in
Section 3 we will show how using double-exponentiation algorithms significantly
improve the verification time of Wesolowski’s construction. Next, Section 4 will
be dedicated to prime testing and Section 5 will discuss hash functions to solve
a specific part of this operation. Finally, Section 6 concludes the paper.

1 In 2022, the throughput of the two major blockchains, Bitcoin and Ethereum, is
limited to just a few transactions per second.

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 3

2 Verifiable Delay Functions

2.1 Context

Using computer programs to verify that some time has elapsed between two
events has been a long-sought-after grail in the cryptography world. This problem
stems from the difficulty of trusting foreign hardware and executions and the
lack of trusted time beacons. In 1993, May mentioned ideas of how to use timed-
release cryptographic protocols [20]. His idea was to send cyphered messages in
the future, meaning that uncyphering the said message would take a predictable
time. Rivest, Shamir. and Wagner [28] proposed the first real construction of
such a function, introducing time-lock puzzle. Their construction was based on
RSA, the core of the puzzle was to compute

b = a2
t

mod N (1)

with N a product of two large prime numbers and a a member of the group
Z

NZ
×. The puzzle issuer can easily compute b by computing e = 2t mod ϕ(N)

and then b = ae mod N with knowledge of the factorization of N , ϕ(N) being
Euler’s totient function. However, an agent wanting to solve the puzzle without
knowledge of N factors will have compute iteratively a2

1

, a2
2

, . . . , a2
t

using
modular squaring’s. The security is based on the equivalent hardness of com-
puting ϕ(N) from N and factoring N , and the conjecture that the faster way of
computing a2

t

mod N without knowledge of ϕ(N) is via iterative squarings [4],
which guarantees that solving the puzzle takes at least T = t·S seconds, where S
is the number of squaring per second that an agent can process. The security is
based on the fact that computing ϕ(N) from N is provably as hard as factoring
N and the conjecture that there is no faster method of computing a2

t

mod N
without knowledge of ϕ(N) than iteratively squaring [4], guarantees that solving
the puzzle takes at least T = t · S seconds, where S is the number of squaring
per second that an agent can process. The novelty of this new scheme is that it
removes the need for a trusted third party.

The next substantial improvement on provable time functions happened in
2018 when Boneh et al. [5] introduced the notion of Verifiable Delay Functions
(VDFs), based on the seminal work of Rivest et al.

2.2 Definition of Verifiable Delay Functions

Boneh et al. present a class of functionsM→ Y, for an input message spaceM
and an output space Y, that consists of a set of three algorithms [5]:

– Setup: Setup(λ, τ) → pp = (ek, vk) that takes a security parameter λ and
a challenge difficulty τ and outputs the public parameters pp which consist
of the evaluation key ek and the verification key vk. The security parameter
λ can be an RSA security (the modulus size), bit-level security, an elliptic
curve security strength, etc. The evaluation key and the verification keys will

4 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

vary greatly depending on the construction, or even be identical; in short,
they provide an instance of the underlying cryptographic scheme considered,
e.g., an RSA modulus.

– Evaluation: Eval(ek,m) → (y, π) that takes an input message m from M
and outputs a solution y from Y; depending on the actual construction of
the VDF, the output can admit a proof π to speed the verification up. Here
again, the input and output spaces M and Y will depend on the construc-
tion. For an RSA-based VDF for example, given a modulus N , we will have
M = Y = [1, N − 1].

– Verification: Verif(vk,m, y, π)→ {⊤,⊥} that accepts as an input the veri-
fication key vk, the evaluation input message m, a candidate solution y and a
potential auxiliary proof π, and deterministically returns ⊤ if Eval(ek,m) =
(y, π), and ⊥ otherwise. In order to be efficient, the Verif algorithm has to
run in a time polylog of Eval.

The set of algorithms must satisfy three properties, correctness, soundness
and sequentiality, to qualify a function as a VDF:

– Correctness: a VDF is said to be correct if the verification returns ⊤ for
any legitimate evaluation output.

– Soundness: the probability that the verification returns ⊤ on inputs that
are not the output of the evaluation algorithm is negligible in λ.

– Sequentiatlity: The evaluation of a VDF consists of a sequence of τ steps
that are performed sequentially.

In this definition of VDFs, the public parameters depend on the challenge
τ . Hence, if τ needs to change, the public parameters must be computed again.
This property has been abandoned by the most recent VDF constructions.

2.3 The Wesolowski construction

This paper focuses on Wesolowski’s VDF construction [31] which is based on
sequential modular squarings. It offers the best tradeoff between verification
time and output lightness [6, 13] which allows use for DLT applications such as
a spam-preventoin mechanism.

Setup The setup requires two security parameters: λ (typically between 1024
and 2048 bits), an RSA modulus size and k (typically between 128 and 256),
the bit-level security of the hashing functions used in the protocol. A committee
generates an RSA public modulus N of bit length λ and defines a cryptographic
hashing function H : {0, 1}∗ 7→ {0, 1}2k. We then define, for any α ∈ {0, 1}∗,{

Hprime(α) = H(α+ j)

j = min{i | H(α+ i) is prime}
(2)

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 5

Evaluation The evaluation takes a challenge τ ∈ N and a message m ∈ {0, 1}∗
as inputs, then computes x = H(m) and solves y = x2τ mod N . If the evaluator
knows ϕ(N), the computation time is drastically decreased as

x2τ mod N = x2τ mod ϕ(N) mod N. (3)

Proof The proof first computes l = Hprime(x+y) and then π = x⌊2τ/l⌋ mod N .
This algorithm can be parallelized, and it takes a 2τ

s log(τ) time to run if s cores
are used. At the end of this phase, the evaluator can publicly use the pair (l, π)
as a proof of computation. Algorithm 1 presents a pseudocode of evaluation and
proof algorithms combined.

Algorithm 1: Wesolowski’s valuation and proof
Input: m ∈ {0, 1}∗, τ ∈ N
Output: π ∈ [0, N − 1], l prime ∈ [0, 22k − 1]
1: x← H(m)
2: y ← x
3: for k ← 1 to τ do
4: y ← y2 mod N
5: end for
6: l← Hprime(x+ y)
7: π = x⌊2τ/l⌋ mod N
8: return (π, l)

Verification A verifier takes as an input the 4-tuple (m, τ, l, π). It first gets the
hash of the message x = H(m) and checks whether

Hprime(x+ y′) = l, (4)

where {
r = 2τ mod l,

y′ = πl · xr mod N.
(5)

The computations described by Eq.(5) are performed to recover the VDF solu-
tion y from (m, τ, l, π). Considering that π = x⌊2τ/l⌋ mod N and y = x2τ mod N ,
then

πl · xr mod N = x⌊2τ/l⌋ · x2τ mod l

= x2τ = y

The verification phase for the Wesolowski’s VDF takes a time O(λ4) and is
independent of τ . Algorithm 2 presents a pseudocode.

6 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

Algorithm 2: Wesolowski’s verification
Input: m, τ, π, l
Output: ⊤ or ⊥
1: x← H(m)
2: r ← 2τ mod l
3: y ← πl · xr mod N
4: if l = Hprime(x+ y) then
5: return ⊤
6: else
7: return ⊥
8: end if

Overhead on the network The output size of a VDF is of paramount im-
portance: as bandwidth becomes a valuable resource in contested environments,
the spam-prevention mechanism’s footprint must be limited. A VDF solution in
the order of magnitude of megabytes would not be suitable for such an applica-
tion. For example, as of 2022, an IOTA message can be up to 32 KiB (32*1024
bytes) and the dedicated space for the PoW proof is 8 bytes. Therefore, we can
state that a footprint in the order of kilobytes would be acceptable. Fortunately,
Wesolowski’s VDF has such a tiny footprint. An evaluation output is composed
of elements of the RSA group π which is at most λ bits long and a prime num-
ber of size at most 2 · k. As motivated later on, a conservative estimation can be
λ = 2048 bits and 2 · k = 512 bits, which make 320 bytes.

2.4 Breakdown of the verification algorithm

In this paper, we will focus on analyzing the performance of the verification
algorithm, which plays a critical role in many applications. In particular, we will
study how to minimize computation time.

Looking at Algorithm 2, we can isolate the following components:

1. Lines 1 and 2 initializes of x and r. Line 2 has a computation time exponential
iwth τ ; however, since l is prime, we have

2τ mod l = 2τ mod ϕ(l) mod l, (6)

since ϕ(l) = l − 1. These lines take a time negligible compared to the other
ones, so we will not consider them in our analysis.

2. Line 3 computes the modular multi-exponentiation (MME) operation y ←
πl · xr mod N . Modular multi-exponentiation is not a trivial operation to
compute [1]. For example, one could try y1 ← πl mod N , y2 ← xr mod N
and then y ← y1 · y2 mod N but it is suboptimal [19].

3. Line 4 is the Hprime function, which returns a prime number that is the
output of several iterations of a hash function. This function can be broken
down into, i) the primality testing and ii) the hashing function. Both have
been extensively studied, and numerous optimization exits. We will present
how some of these fit well for Wesolowski’s verification.

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 7

In Table 1 we display the computation times of the MME, hashing, and prime
testing parts of the verification algorithm, considering values for k in {256, 512}
and for λ in {1024, 2048, 4096}, these values being the most realistic ones to be
used in a real-world setup. The hardware is the Apple M1 chip, using OpenSSL,
and will also be used in the rest of this paper. In addition to computation time,
we have provided the percentages of each part of the verification, each line adding
up to 100%.

Each step takes a substantial amount of time, depending on k and λ. Hashing
is quite stable, taking 14–18% for k = 256 down to 7–9% for k = 512. Inversely,
the multi-exponentiation computation share increases with λ and the prime test-
ing shares increase with k. The computation time of multi-exponentiation de-
pends on k and λ, 2k being the exponent size and λ the radix. Hashing increases
with k and λ, λ being input values’ size and 2k the output’s. However, prime
testing is independent of λ because it only tests numbers of size 2k.

Each part can be optimized independently since they are executed sequen-
tially and the output of the two first is the last one’s input. The values displayed
in Table 1 motivate this study, each part taking substantial time; hence an opti-
mization on each has its own merits. Therefore, we will analyze each part of the
verification, namely MME, hashing and prime testing, in separate sections.

k λ MME Hashing Prime testing Total

256

1024 0.117 (14%) 0.143 (17%) 0.574 (69%) 0.834
2048 0.407 (35%) 0.205 (18%) 0.551 (47%) 1.16
4096 1.542 (65%) 0.328 (14%) 0.500 (21%) 2.36

512

1024 0.271 (7%) 0.286 (7%) 3.42 (86%) 3.98
2048 0.771 (17%) 0.413 (9%) 3.42 (74%) 4.60
4096 2.94 (42%) 0.66 (9%) 3.41 (49%) 7.01

Table 1: Breakdown of the verification algorithm, for the modular multi-
exponentiation (MME), hashing, and prime testing parts, for different values
of k and λ. Values are in milliseconds.

Algorithm 3: Pseudocode of the function Hprime

Input: m ∈ {0, 1}∗, k ∈ N
Output: l prime ∈ {0, 1}2k
1: i← 0
2: while Hk(x+ i) is not prime do
3: i← i+ 1
4: end while
5: return Hk(x+ i)

8 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

3 Use of double-exponentiation algorithms for verification
optimization

In this section, we optimize the computation of the MME part of Wesolowski’s
VDF verification, corresponding to Line 3 of Algorithm 2, which can take up to
42% of the verification time according to Table 1. In the verification algorithm,
it is required to compute y′ ← πl · xr mod N where π, x and N are of size λ
bits and l and r are of size 2k bits. A naive way to perform this operation is to
compute y1 ← πl mod N and y2 ← xr mod N and then y ← y1 · y2 mod N .
However, this is suboptimal [19], and we present in this section some algorithms
to speed it up. The above problem is of the following form:

Problem 1 (Double-exponentiation computation). Find the algorithm A⋆ that
solves xa · yb mod N in the shortest average time, for x and y random elements
of an RSA group of modulus N with size λ and a, b random integers of size K.

Problem 1 is referred to as the double-exponentiation computation and is
part of a broader area of research named multi-exponentiation algorithms which
consists in computing

∏n
i=1 x

ei
i with ei{i∈[1,n]} and xi{i∈[1,n]} being elements of a

cyclic group and n a natural number. The radices xi have a λi-bits representation
while the exponents have a K-bits one. As we will see in the rest of the section,
these parameters largely affect the verification time.

The literature comprises various algorithms, mostly dedicated to solving the
general multi-exponentiation problem [21, 33], which can be easily reduced to
the double-exponentiation problem. For our scenario, two relevant algorithms
are the Windowed 2w-ary algorithm (2w-ary) and the Simultaneous sliding
window algorithm by Yen, Laih and Lenstra (YLL). The two algorithms are
similar, the latter being optimization of the former. They are based on differ-
ent precomputing combinations of products of small powers of x and y. The
evaluation of the multi-exponentiation is reduced to a series of table lookup,
modular product, and squaring, as in the quick exponentiation. The two algo-
rithms have a tuning parameter w that describes the size of the small powers
of y and x computed in the precomputation phase. The precomputation time
grows exponentially with w but the evaluation time is inversely proportional to
w. Pratically, YLL introduces some computational overhead in the evaluation
phase of the multi-exponentiation that gets smoothed out when increasing λ,
hence increasing the relative weight of modular multiplication concerning to the
computational overhead induced by YLL.

Attias et al. [2] performed an implementation study of double-exponentiation
algorithms, providing computation time comparisons between the naive ap-
proach, 2w-ary and YLL, using a very similar hardware as ours. In particular,
the authors provide a heatmap, referenced in Figure 1, highlighting the algorithm
with the shortest computation time for double-exponentiation for different values
of λ and k. Hence, for the set of values we are interested in, i.e., K in {128, 256}
and λ in {1024, 2048, 4096}, the best algorithm to use is YLL with w = 2 for
K = 256 or YLL with w = 3 for K = 512.

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 9

22 23 24 25 26 27 28 29 210 211 212 213

Value of k

22

23

24

25

26

27

28

29

210

211

212

213

Va
lu

e
of

Separate

2-2w-ary

2-YLL

3-2w-ary

3-YLL

4-2w-ary

4-YLL

Fig. 1: Best MME algorithm as a function of λ and k on an Apple M1 chip.

3.1 Experimental results

Given the implementations provided in [2], we compare the computation times
for the MME part of the verification. Table 2 presents the results for the values
of K and λ aforementioned. The optimization is stable, around 66% for K = 256
and 62–63% for K = 512, which represent a substantial improvement. Moreover,
the computation time is linear with K and λ, which helps with predicting perfor-
mances. Additionally, YLL being constantly the optimal algorithms alleviates
implementing.

4 Prime testing

The second important optimization concerns the Hprime function, described in
Section 2.4. It consists of two operations, a hash and a primality test, repeated a
certain number of times. However, the number of repetitions is unpredictable as
the algorithm stops as soon when a prime is found. In the two following sections,
we explain how Hprime can be optimized using specific tricks for primality testing
of the hash output and then speeding up hashing.

10 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

K λ Separate Optimized Factor

256

1024 0.119 0.078 (2-YLL) x0.66
2048 0.415 0.270 (2-YLL) x0.65
4096 1.546 1.027 (2-YLL) x0.66

512

1024 0.222 0.143 (3-YLL) x0.64
2048 0.788 0.490 (3-YLL) x0.62
4096 3.001 1.891 (3-YLL) x0.63

Table 2: Multi-exponentiation computation times and factor for different values
of K and λ, comparing Separate and Optimized algorithms.

4.1 Number of candidates required to find a prime

This paper will not present yet another prime testing algorithm, but rather show
how we can optimize their use.

The OpenSSL library uses the Rabin-Miller primality test [24]. We recall
that a primality test involving the Rabin-Miller algorithm of a number x works
in the following way:

1. First, a trial division is performed on x, testing division by a certain amount
of small primes. This amount depends on x’s size. This quickly eliminates
candidates instead of going into the Miller-Rabin test, which involves heavy
computations

2. Then, x will be tested for primality. Rabin-Miller’s algorithm is a general-
ization of the primality testing based on the use of Fermat’s Little Theorem.
Fermat’s test simply computes ap−1 mod p, for some a larger than 1. If the
outcome is not 1, p is rejected as a composite, otherwise the algorithm re-
ports ’probably prime’. The RM test ’removes’ the probabilistic nature of
Fermat’s primality testing by implementing the same computation in a more
refined way. Firstly, p−1 is represented as 2ab for some positive a and b, b is
odd. Then, one computes ab mod p first, followed by a squarings modulo p.
If the final answer is not 1, p is rejected, otherwise, we look at the previous a
reductions. If any of them is not 1 or p−1, then the number p is rejected as a
composite, even though it passes Fermat’s primality test. This is the crucial
difference between the two tests. If the test is successfully passed for any a
less than 2ln2(p), then the number p can be certified as a prime number. The
algorithm is very powerful, but it still involves a large number of modular
exponentiations.

We have estimated that for our hardware, for a very large number of 2048
bits integers, the time spent in the Rabin-Miller test represents 96% of the
accumulated computation time. This shows that the trial division which prunes
some candidates is a valuable part of prime testing. It prevents most of them
from entering the Rabin-Miller test and then grieve the computation time.

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 11

In Hprime we run the Rabin-Miller test a certain number of times to find
a prime. But how many candidates should we test to find a prime? The more
candidates, the more hashing will have to be performed and the more prime we
test. Although not all candidates make it to the Robin-Miller test, some do and
all increase computation time.

Considering that Hprime returns a uniform random number of N bits, the
probability that it is prime is 1

N ln 2 [23], thus the average number of trials to
find a prime is N ln 2, so respectively 155, 178, 266 and 354 for N being 224,
256, 384 or 512 bits. The number of candidates until finding a prime distribution
follows a geometric law. For p = 1

N ln 2 , we have P [x = k] = p · (1− p)k. Figure 2
represents this distribution for N = 256 and N = 512 with the dashed lines.
While the number of candidates is theoretically unbounded, after one million
runs of the Hprime function it takes less than 5000 trials to find a prime.

However, number theory teaches us that sieving candidates using small prime
numbers increases the probability of finding a prime. Indeed, half of the numbers
are divisible by 2; a third is divisible by 3; a fifth is divisible by 5 etc. Thus,
if a number has no small prime divisors, up to a certain threshold, then the
probability that it is a prime rises significantly.

De Bruijn [9] gives an estimated formula of the probability for a sieved num-
ber to be prime. For a number of size N with no prime divisors up to B, the
prime probability is eγ lnB

N

(
1 + o

(
1
N

))
with γ the Euler-Mascheroni’s constant,

approximately 0.57721. For example for B = 47, i.e., the 15-th prime number and
N = 512 bits, the probability to find a prime is 1

51 . Compared to the probability
of 1

354 for a uniform random number, this is a huge gap.

4.2 Primality testing without trial division part

Fortunately, in our case, we have a way to manipulate the hash function’s output
to obtain a sieved number without trial divisions. For a random x and a given B,
x = ⌊ xB ⌋ ·B + 1 is co-prime with B. Then, considering y the output of our hash
function, if B is the product of a certain amount of the first prime numbers, we
can build y that does not have any of these first prime numbers. Then, we can
considerably limit the number of candidates the Hprime function has to test to
find a prime.

We need to understand what B to consider, i.e., how many small primes are
necessary to yield a satisfying reduction of the candidates. Table 3 displays the
following information:

– A theoretical estimation of the average number of candidates required to find
a prime, for i) uniformly random candidates and ii) candidates sieved up to
the 15 first small primes, for candidates of size 224, 256, 384 and 512 bits.
For uniformly drawn candidates we use the formula N ln 2 and for sieved
numbers, we use the De Bruijn estimation.

– An experimental estimation of the average number of candidates required to
find a prime evaluate the theoretical estimations.

12 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

We have limited our experimentations to the fifteen first small primes because
it is the maximum number of small primes whose product fits into a 64 bits word,
allowing us to use the OpenSSL word division function instead of dividing by a
bignum.

Primes Product of primes N=224 N=256 N=384 N=512
DB Exp DB Exp DB Exp DB Exp

0 1 155 153 177 178 266 265 354 354
1 2 125 78 143 87 215 132 287 176
2 6 79 52 90 57 136 88 181 117
3 30 54 41 61 47 92 71 123 93
4 210 44 36 51 40 76 60 102 81
5 2310 36 52 41 36 62 55 83 73
6 510510 33 29 38 34 58 50 77 68
7 510510 30 28 35 31 52 47 70 63
8 9699690 29 26 33 29 50 45 67 62
9 223092870 27 25 31 29 47 42 63 57
10 6469693230 25 24 29 27 44 41 59 56
11 200560490130 25 24 29 27 43 40 58 54
12 7420738134810 24 22 27 26 41 39 55 52
13 304250263527210 23 22 26 25 40 38 53 51
14 13082761331670030 23 22 26 25 39 37 52 50
15 614889782588491410 22 21 25 24 38 36 51 49

Table 3: Comparison of the average number of candidates required to find a
prime number between the De Bruijn formula (DB) and experimental results
(exp), with numbers of size 224, 256, 384, and 512 bits.

We can make several observations:

– As predicted by the formula, the average number of candidates to find a
prime is linear with the size of the number to test N .

– The average number of candidates to test decreases dramatically by a factor
of 7 (approximation from eγ ˙ln43 ≈ 6.699) when the first fifteen primes are
considered. This means that we can perform seven times less hash and prime
testing for a single word division and a multiplication per candidate.

– De Bruijn’s formula precision is weak for a low amount of small primes
sieved. For example, when only the prime factor 2 is removed, the difference
between the real experimental values and the De Bruijn formula is 40%.
However, such a difference decreases below 10% after only eight primes.

– De Bruijn approximation constantly overestimates the average number of
candidates before finding a prime, even though it becomes very close for
fifteen primes. It proves that the formula is only an approximation and should
be considered carefully.

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 13

Table 3 shows that we do not need a high number of sieved numbers to
reduce the number of candidates significantly. We argue that a cutoff of the
first fifteen primes is sufficient as it offers a good tradeoff between division costs
and effictively reduces the number of candidates. For example, the OpenSSL
library runs the trial division phase for the 64 first primes for numbers up to 512
bits long. The 64-th prime is 311, then according to the De Bruijn formula, the
expected number of candidates should be respectively 25 and 50 for numbers of
size N of 256 and 512 bits. When compared with Table 3, it is not a significant
improvement. However, the product of the 64 first primes is a 417 bits long
number which fits in 7 words of 64 bits each, supporting that sieving only up to
the 15 first primes is sufficient.

Figure 2 shows the number of candidates to a prime probability distribu-
tion and the effect of sifting through the numbers with the presented technique
with a logarithmic x-axis scale. Since the distribution follows a geometric law,
it is markedly more likely to find a prime with a low number of candidates
than without sieving. The possibility of performing more than 100 trials is al-
most nonexistent. In addition to reducing the average computation time, it also
improves the predictability of the computation time by reducing the standard
deviation.

100 101 102 103

Number of candidates

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 su
cc

es
s

256 random
256 sieved
512 random
512 sieved

Fig. 2: Probability of finding a prime in function of the number of trials for
candidates of size 256 and 512 bits and with comparison with sieved numbers

14 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

4.3 Security analysis

It is fundamental to check that the filtering technique described in the previous
section cannot be exploited to affect the security of the VDF. Here we investigate
the set of primes that can be generated using the sieving method.

This method produces numbers that can be identified to an arithmetic pro-
gression of the form {a + i · d | i ∈ N}, with a = 1 and d = B. We denote
the prime-counting function in this set with πa,d(x), which counts the num-
ber of primes smaller than x. This function can be efficiently approximated by
π(x) ≈ x

ln x . For numbers of size respectively 256 and 512 bits, there are approx-
imately 1074 and 10151 primes respectively. Dirichlet and Legendre conjectured,
then proved by de la Vallée Poussin, that

πa,d(x) ∼
Li(x)
φ(d)

, (7)

with φ being the Euler’s totient function, and Li being the offset logarithmic
integral, that is Li(x) =

∫ x

2
dt
ln t . We see that i) the number of primes does not

depend on the offset a; ii) the factor of primes “lost” in the sieving operation
only depends on the size of B, not on the size of the numbers sieved.

Figure 3 displays the number of primes that can be generated after sieving
(in blue) as a function of the number of small primes used to sieve, against the
total number of primes that can be generated (in red) for numbers of size 256 and
512 bits. It shows that when sieving the fifteen first prime numbers, the number
of accessible prime numbers is reduced from 2247 to 2207 (for the 256 dynamic
range). But even this can be circumvented with the use of randomization.

We propose the following algorithm. For a given output x of the hash func-
tion, we compute

x = ⌊ x
B
⌋ ·B + r, (8)

with r being a random number smaller than B and co-prime with ⌊ xB ⌋ · B. In
this way, we can generate all the co-prime numbers with B. The main issue is
how to draw this number r in practice. r has to be deterministically generated
to ensure Hprime correctness.

4.4 Experimental results

Finally, Table 4 shows the average time to compute a single primality test,
for randomly chosen numbers and sieved numbers (up to fifteen small primes).
We also estimate the computation time spent on prime testing in Hprime by
multiplying the previous value by the average number of candidates required to
find a prime. Finally, in the last column we display the Hprime speedup when
using the sieving technique. We display these values for numbers of size 224, 256,
384 and 512 bits.

A single primality test is on average more computationally expensive when
sieved numbers are considered because a sieved number is 7 times more likely to

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 15

2 4 6 8 10 12 14
Number of small primes in B

1065

1077

1089

10101

10113

10125

10137

10149

Nu
m

be
r o

f p
rim

es
 g

en
er

at
ed

Baseline 512 bits
Division 512 bits
Baseline 256 bits
Division 256 bits

Fig. 3: Comparison of the number of primes reachable after sieving concerning
random numbers in the function of the number of small primes sieved and with
values for 256- and 512-bits numbers.

pass the trial division and make it to the Rabin-Miller test, which is more expen-
sive than trial division by a factor of (almost) 2. The ratio of 7 is also observed
here. When sieving, we save the trial division for the 85% of candidates elimi-
nated (that would have failed the Rabin-Miller test anyway). The improvement
observed on Hprime is limited, only up to around 4%. However, the primality test
is intertwined with executing a hash function. Hence, the speedup here and the
optimization that we will show in the next section contribute to a non-negligible
verification optimization.

5 Optimized hashing

In this section, we discuss about the hash function H used in Hprime. We require
H to be cryptographically secure, i.e, to satisfy:

– Pre-image resistance (PR): given an output y, it is not feasible to find
an input x such that H(x) = y.

– Second pre-image resistance (SPR): given an input x1, it is hard to
find a second input x2 such that H(x1) = H(x2).

16 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

Size Random Sieved Speedup
224 554 (3.57) 532 (25.3) 3.97%
256 635 (3.57) 609 (25.4) 4.09%
384 2430 (9.17) 2360 (65.5) 2.88%
512 3510 (9.92) 3390 (69.2) 3.42%

Table 4: Total and per-trial (in parenthesis) average computation time in mi-
croseconds of primality testing between a uniformly random number and a sieved
number up to fifteen small primes, for numbers of size 224, 256, 384, and 512
bits.

– Collision resistance (CR): it is hard to find a distinct pair (x1, x2) of
inputs such that H(x1) = H(x2).

CR implying SPR. Thus, if a hash function satisfying SPR has an output
size k, then it must have an output size 2k to satisfy CR because of the existence
of birthday attacks [15].

Practically, an acceptable bit-level security is 128 bits, whereas a considered
strong bit-level security is 256 bits. We present in this section an optimization
that can be applied to VDF verification.

5.1 Context copying optimization

This section presents the optimizations for Hprime. Table 1 shows that Hprime

makes up to 18% of the total verification time. The input fed into the hash
function is x+ i with i typically being a value below 5,000, as in Section 4.1. So
i can be described with only two bytes. On the other hand, x typically has a size
of 128, 256, or 512 bytes, meaning that the hash function’s input x+ i is mostly
the same when the Hprime function is called, except for the last byte updated
at each call.

Delving into the inner workings of hashing functions helps understanding
how this particular phenomenon can be leveraged to optimize the performances
of Hprime. From a high-level perspective, a hash function is called in OpenSSL
as follows:

– Creation. A hashing context holding the internal hashing state gets created.
– Update. The state of the hashing context is updated given a memory area

and a length in bytes. This will prepare the internal hashing states with the
input memory.

– Finalization. The hash output is written into a memory area, ready to be
used.

The updating step of the hash primitive accepts arbitrary long memory size.
It is possible to deterministically update multiple times a hashing context, with

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 17

103 2 × 103 3 × 103 4 × 103

Input size

0

100

200

300

400

500

600

Co
m

pu
ta

tio
n

tim
e

(
s)

SHA-512
SHA-512 copy
SHA-256
SHA-256 copy

103 2 × 103 3 × 103 4 × 103

Input size

0

10

20

30

40

50

60

70

80

Co
m

pu
ta

tio
n

tim
e

(
s)

SHA-512
SHA-512 copy
SHA-256
SHA-256 copy

103 2 × 103 3 × 103 4 × 103

Input size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ra
tio

SHA-512 sieved
SHA-512
SHA-256 sieved
SHA-256

(a) Non-sieved input. (b) Sieved input.
(c) Ratio of computation
time of copy-context over
original method.

Fig. 4: Comparison of computation time dedicated to hash in the verification
algorithm in function of the input size λ.

1024 2048 4096
0.0

0.5

1.0

1.5

2.0

Co
m

pu
ta

tio
n

tim
e

(m
s)

0.117
0.407

1.542

0.143

0.205

0.328

0.574

0.834 0.551

1.163

0.500

2.370

0.078
0.270

1.027

*
*

*

0.551

0.632
0.529

0.802

0.481

1.511

Multiexponentiation
Hashing
Prime Testing

(a) k = 128
∗ indicates 0.003ms for optimized hashing

1024 2048 4096
0

1

2

3

4

5

6

7

Co
m

pu
ta

tio
n

tim
e

(m
s)

0.271 0.771

2.940

0.286
0.413

0.660

3.420

3.977

3.420

4.604
3.410

7.010

0.143 0.490
1.890

**
**

**3.317

3.482

3.320

3.832
3.310

5.223

Multiexponentiation
Hashing
Prime Testing

(b) k = 256
∗∗ indicates 0.023ms for optimized hashing

Fig. 5: Comparison of computation time dedicated to each component between
non-optimized and optimized implementations for bit-level security k equal to
128 bits in (a) and 256 bits in (b)

different memory areas and memory lengths, the smallest unit being one byte.
Our idea is to copy the hashing context at each loop in order to independently
update it each time. Since x is of size n bytes, we start by initializing a hash
context c that we will update with the n− 2 left-most bytes of x. Then, at each
iteration, we create a new hash context c′ that is a deep copy of c, and we update
c′ with the 2 right-most bytes of x, finalize the hash of the context c′ and write
the result in r that we will be prime tested. If not a prime, we set x ← x + 1
to get the next candidate. The idea is that the original hash context c is never
changed, so each iteration involves updating 2 bytes instead of n.

5.2 Experimental results

In this section, we are interested in determining whether and how the context
copying method can reduce the hashing computation time with our experimen-

18 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

tation. The total hashing time is practically independent of the input size λ. We
say practically because we are limited to 2 bytes of increment, i.e., 65536 trials,
which are enough for our purposes. But, more generally, if m (instead of 2) is
the number of bytes left for the increment and k ≪ m is the input’s bytes size,
then one has to hash k−m bytes in the first phase and then can try 256m times.

Figure 4a depicts the time spent hashing in Hprime with and without the copy
context technique for SHA-256 and SHA-512, as a function of λ. Figure 4b shows
the same time when the input is sieved using the technique in Section 4 Finally,
Figure 4c displays the ratio between the original and the copy-context techniques
for the SHA-256 and SHA-512 hash functions, and with and without the sieving
technique applied. First, even for a small number of trials, the computation
time is (almost) independent of the input size in the case of the copy-context
technique while the original method has a super-linear behavior. There is a
ratio of 7 between when we sieve or not, which is consistent with the results in
Section 4. Finally, Figure 4c indicates that the ratio between the original and
the copy-context techniques does not depend on whether the input is sieved or
not, i.e., the amount of trials.

6 Conclusion

In this paper, we have conducted an analysis of the verification of Wesolowski’s
VDF construction. We have divided the algorithm into three parts, i) modular
multi-exponentiation, ii) prime testing and iii) hashing. We conducted a theo-
retical analysis of the underlying problem for each of these parts, fine-tuned some
optimizations, and supported theoretical findings with experimental results.

For the modular multi-exponentiation, we have shown that using dedicated
algorithms such as the Simultaneous sliding window algorithm can reduce by
33% the computation time of a modular multi-exponentiation. For the prime-
testing algorithm, we have provided an analysis of how to generate numbers
that are already sieved out of the Hprime function with minimal computational
overhead and how it reduces the number of trials to find a prime in the Hprime

function by a factor of 7 with very little overhead which finally yields about a
5% speedup. Finally, we have demonstrated how to leverage the structure of the
hashing function inputs to dramatically decrease the computation time, which
becomes negligible. To sum up the results of this work, we display Figure 5
which shows the total computation time when k = 128 (Figure 5a) and k = 256
(Figure 5b): our optimizations reduce the computation time of the verification
of the Wesolowski’s VDF between 12% and 35% for the range of parameters
considered in this work.

References

1. V. Attias et al. Preventing Denial of Service Attacks in IoT Networks through
Verifiable Delay Functions. In GLOBECOM 2020, 2020.

Fine-Tuned Verification for Verifiable Delay Functions in Blockchains 19

2. Vidal Attias, Luigi Vigneri, and Vassil Dimitrov. Rethinking modular multi-
exponentiation in real-world applications. Journal of Crypto. Eng., 2022.

3. Adam Back et al. Hashcash-a denial of service counter-measure, 2002.
4. N. Bitansky et al. Time-lock puzzles from randomized encodings. In ITCS 2016,

pages 345–356, 2016.
5. D. Boneh et al. Verifiable delay functions. In CRYPTO 2018.
6. D. Boneh et al. A survey of two verifiable delay functions. IACR Cryptol. ePrint

Arch., page 712, 2018.
7. A. Chepurnoy et al. A Systematic Approach to Cryptocurrency Fees. In Financial

Cryptography and Data Security. 2019.
8. B. Cohen and K. Pietrzak. The chia network blockchain, 2019.
9. N. G. de Bruijn. On the Number of Uncancelled Elements in the Sieve of Eratos-

thenes. In Reviews in Number Theory. 1974.
10. L. De Feo et al. Verifiable delay functions from supersingular isogenies and pairings.

In ASIACRYPT 2019, 2019.
11. César A. Del Río. Use of distributed ledger technology by central banks: A review.

Enfoque UTE, 8(5):1–13, 2017.
12. John R. Douceur. The sybil attack. In Druschel, Peter, Kaashoek, Frans, Rowstron,

and Antony, editors, Peer-to-Peer Systems, volume 2429, pages 251–260. Springer
Berlin Heidelberg, 2002.

13. Attias et al. Implementation Study of Two Verifiable Delay Functions. In Toke-
nomics, pages 1–6, 2020.

14. Pietro Ferraro, C. King, and Robert Shorten. Distributed ledger technology for
smart cities, the sharing economy, and social compliance. IEEE Access, 6:62728–
62746, 2018.

15. Philippe Flajolet and Andrew M. Odlyzko. Random Mapping Statistics. Advances
in Cryptology — EUROCRYPT ’89, pages 329–354, 1990.

16. Fred Huibers. Distributed Ledger Technology and the Future of Money and Bank-
ing: Banking is Necessary, Banks Are Not. Bill Gates 1994. Accounting, Economics
and Law: A Convivium, pages 1–37, 2021.

17. Saurabh Jain, Neelu Jyothi Ahuja, P. Srikanth, Kishor Vinayak Bhadane,
Bharathram Nagaiah, Adarsh Kumar, and Charalambos Konstantinou. Blockchain
and Autonomous Vehicles: Recent Advances and Future Directions. IEEE Access,
9:130264–130328, 2021.

18. Christine Kim. Ethereum 2.0: how it works and why it matters, 2020.
19. V. V. Kochergin. On Bellman’s and Knuth’s Problems and their Generalizations.

Journal of Mathematical Sciences (United States), 233(1), 2018.
20. Timothy C May. Timed-Release Crypto. http://cypherpunks.venona.com/date/

1993/02/msg00129.html, 1993.
21. Bodo Möller. Algorithms for Multi-exponentiation. In Serge Vaudenay and Amr M

Youssef, editors, Selected Areas in Cryptography, pages 165–180, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

22. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review, page 21260, 2008.

23. Władysław Narkiewicz. The Development of Prime Number Theory. Springer,
Berlin, Heidelberg, 2000.

24. OpenSSL. Openssl primality checking documentation, 2022. https://www.
openssl.org/docs/man3.0/man3/BN_check_prime.html, Last accessed on 2022-
04-24.

http://cypherpunks.venona.com/date/1993/02/msg00129.html
http://cypherpunks.venona.com/date/1993/02/msg00129.html
https://www.openssl.org/docs/man3.0/man3/BN_check_prime.html
https://www.openssl.org/docs/man3.0/man3/BN_check_prime.html

20 Vidal Attias, Luigi Vigneri, and Vassil Dimitrov

25. Krzysztof Pietrzak. Simple verifiable delay functions. In 10th Innovations in Theo-
retical Computer Science Conference (ITCS 2019), volume 124, pages 60:1—-60:15.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

26. Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments, 2016.

27. Serguei Popov, Hans Moog, Darcy Camargo, Angelo Capossele, Vassil Dimitrov,
Alon Gal, Andrew Greve, Bartosz Kusmierz, Sebastian Mueller, Andreas Pen-
zkofer, Olivia Saa, William Sanders, Luigi Vigneri, Wolfgang Welz, and Vidal At-
tias. The Coordicide. IOTA Foundation, 2020.

28. R. L. Rivest et al. Time-lock puzzles and timed-release Crypto 1 Introduction.
Cryptologia, 1996.

29. D. Roeck et al. Distributed ledger technology in supply chains: a transaction cost
perspective. International Journal of Production Research, 2020.

30. V. Tabora. The Evolution of the Internet, From Decentralized to Centralized,
2018.

31. B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT 2019, 2019.
32. G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White

Paper, 21:2327–4662, 2016.
33. S. M. Yen et al. Multi-exponentiation. IEE Proceedings: Computers and Digital

Techniques, 1994.

	Fine-Tuned Verification for Verifiable Delay Functions in Blockchains

